

MBMet-200 Series Rain Sensor Product Manual

Introduction

MBMet-200 Series Rain Sensor is a hydrological and meteorological instrument used to measure natural rainfall, and at the same time convert the rainfall into digital information output in the form of switching value, so as to meet the requirements of information transmission, processing, recording and display, etc. needs.

This instrument is a primary instrument for measuring precipitation, and its performance meets the requirements of the Relevant Standards.

The tipping bucket, the core component of the instrument, adopts a three-dimensional streamlined design, which makes the tipping bucket turn water more smoothly and is easy to clean.

This instrument is a precision double tipping bucket rain gauge. During use, it is necessary to regularly maintain and clean the tipping bucket and the water outlet of the diversion funnel.

The inclination of the tipping bucket has been adjusted and locked at the optimal inclination position when the instrument leaves the factory. When installing the instrument, it is only necessary to install the tipping bucket and adjust the level of the base according to the requirements of this manual, and it can be put into use. The tipping bucket inclination adjustment screw cannot be readjusted any more on site.

2 Characteristics

- (1) High precision and good stability.
- (2) Good linearity, long transmission distance and strong anti-interference ability.
- (3) Small size and easy installation.
- (4) Mesh holes are designed at the funnel to prevent debris such as leaves from blocking the downflow of rainfall.
- (5) The shell of the instrument is made of ABS engineering plastics/polycarbon, which does not rust and has good appearance quality.

- (6) The rain-bearing mouth is made of ABS engineering plastic/polycarbon injection molding, with high smoothness and small error caused by stagnant water.
- (7) There is a leveling bubble inside the chassis, which can assist the bottom angle to adjust the levelness of the equipment.

3 Application

The rainfall recorder independently developed and produced by our company can measure precipitation, precipitation intensity, precipitation time, etc. It can be used in meteorological stations (stations), hydrological stations, agriculture and forestry, national defense, field observation and reporting stations and other relevant departments. It can provide original data for flood control, water supply scheduling, and water regime management of power stations and reservoirs.

Technical Parameters

Rain Inlet Size: \$\Phi\$200mm; Acute Angle of Edge: 40°-45°

Resolution: 0.2/0.5mm

Rain Intensity Range: 0.01mm-4mm/min (The maximum rain intensity

allowed to pass is 8mm/min)

Accuracy: ≤±3%

Output signal: A: voltage signal (Choose one of 0~2V, 0~5V, 0~10V)

B: 4~20mA (Current loop)

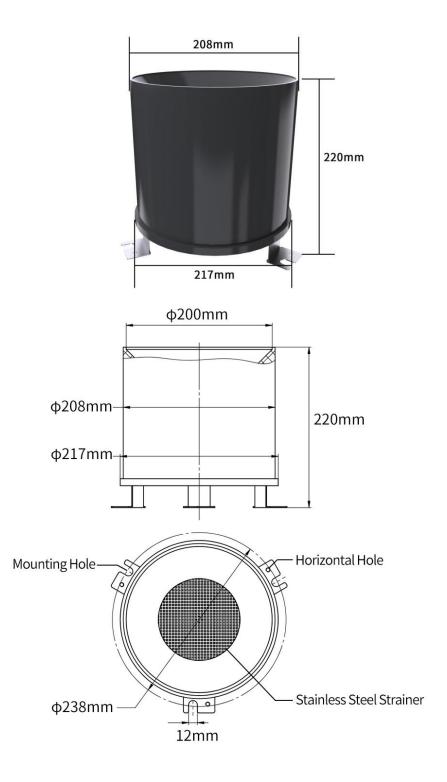
C: RS485 (Standard Modbus-RTU protocol, device default

address: 01

D: Pulse signal (One pulse represents 0.2/0.5mm rainfall

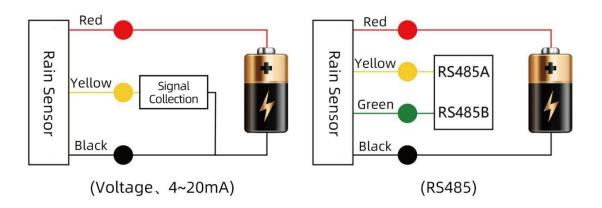
Supply voltage: 5-24 V DC (When the output signal is 0~2V, RS485)

12-24 V DC (When the output signal is $0{\sim}5$ V, $0{\sim}10$ V, $4{\sim}$


20mA)

Working temperature: 0°C-70°C

Working humidity: <100% (non-condensing)


Form Factor

6 Using Method

Rain Sensor can be connected to various data collectors with differential input, data acquisition cards, remote data acquisition modules and other equipment. The wiring instructions are as follows:

7 Data Conversion Method

The standard for the output analog signal of the tipping bucket rain gauge is to start the calculation of the cumulative rainfall from zero (00:00) of the day until so far, the default range is $0 \sim 100$ mm, other ranges can also be selected.

H: rainfall, unit: mm;

V: the voltage value collected by the collector, unit: V;

A: The current value collected by the collector, unit: mA;

Output	Data Conversion Method for Each Range					
Signal	0∼50mm	0∼100mm	0∼200mm			
0∼2V DC	H=25*V	H=50*V	H=100*V			
0∼5V DC	H=10*V	H=20*V	H=40*V			
0~10V DC	H=5*V	H=10*V	H=20*V			
4∼20mA	H=3.125*A-12.5	H=6.25*A-25	H=12.5*A-50			
Pulse	One pulse represents 0.2/0.5 mm rainfall					

RS485 signal (default address 01:

Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8;

stop bit: 1

7.1 Modification Address

For example: Change the sensor with address 1 to address 2, host→slave

	Origin al Addres s	Functio n Code	Registe r Address High	Registe r Address Low	Start Address High	Start Address Low	CRC16 Low	CRC16 High
f	0X01	0X06	0X00	0X30	0X00	0X02	0X08	0X04

If the sensor receives the correct data, the data will be returned in the same way.

Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as an address query method.

7.2 Query/Set Time

Query time. host→slave

Original Address	Function Code	"	Register Address Low	Register Length High	Register Length Low	CRC16 Low	CRC16 High
0X01	0X03	0X00	0X34	0X00	0X03	0X44	0X05

If the sensor is received correctly, it will return the following data, slave → host.

Addre	Functio	Data	Year	Month	Day	Цолг	Minu	Second	CRC16	CRC16
SS	n Code	Length	rear	IVIOTILIT	Бау	Hour	te	Second	Low	High
0X01	0X03	0X06	0X20	0X03	0X30	0X10	0X25	0X10	77	8C
			ВС	BCD code, means 30th March, 20 10:25:10						

If the clock is skewed, the clock can be calibrated, host→slave

0X01	
0//01	
0X10	
0X00	
0X34	
0X00	
0X03	
0X06	
0X20	
0X04	
0X03	BCD code
0X17	indicating: April 3, 20 17:06:28
0X06	0, 20 17.00.20
0X28	
0XE2	
0XF4	
	0X10 0X00 0X34 0X00 0X03 0X06 0X20 0X04 0X03 0X17 0X06 0X28 0XE2

If the sensor receives correctly, the following data will be returned, slave \rightarrow host

Add	dress	Function Code	Start Register Address High	Start Register Address Low	Register Length High	Register Length Low	CRC16 Low	CRC16 High
0)	X01	0X10	0X00	0X34	0X00	0X03	0XC1	0XC6

7.3 Rainfall Query

Query the data (rainfall) of the sensor (address 1), host→slave

		Start	Start	Register	Dogistor		
Address	Function	Register	Register	Length	Register Length	CRC16	CRC16
Address	Code	Address	Address	High	l .	Low	High
		High	Low	ПIGII	Low		
0X01	0X03	0X00	0X00	0X00	0X0A	0XC5	0XCD

If the sensor is received correctly, it will return the following data, slave → host.

Address	0X01	
Function Code	0X03	
Data Length	0X14	
Register 0 Data High	0X00	Rainfall on the day: 10.0 mm
Register 0 Data Low	0X64	Rainfall from 0:00 a.m. to the present
Register 1 Data High	0X00	Instant rainfall: 1.6 mm
Register 1 Data Low	0X10	Rainfall between two queries
Register 2 Data High	0X00	Rainfall yesterday: 8.0mm
Register 2 Data Low	0X50	Rainfall in 24 hours yesterday
Register 3 Data High	0X06	Total rainfall: 166.5mm
Register 3 Data Low	0X81	Total rainfall after sensor power up
Register 4 Data High	0X00	
Register 4 Data Low	0X02	Hourly rainfall: 0.2mm
Register 5 Data High	0X00	0.2mmRainfall in the last
Register 5 Data Low	0X02	hour: 0.2mm
Register 6 Data High	0X00	24-hour maximum rainfall:
Register 6 Data Low	0X64	10.0mm
Register 7 Data High	0X01	24-hour maximum rainfall
Register 7 Data Low	0X02	period 01:00∼02:00
Register 8 Data High	0X00	24 hours minimum rainfall:
Register 8 Data Low	0X00	0.0mm
Register 9 Data High	0X03	24-hour minimum rainfall
Register 9 Data Low	0X04	period 03:00∼04:00
CRC16 Low	0X24	
CRC16 High	0XDC	

7.4 Rainfall Data Reset Setting

Rainfall data reset setting, host→slave

	Original ddress	Function Code	Register Address High	Register Address Low	Data Content High	Data Content Low	CRC16 Low	CRC16 High
(0X01	0X06	0X00	0X37	0X00	0X03	0X78	0X05

If the sensor receives correctly, the data will be returned in the same way. Note: Before installation and use, it is necessary to set the rainfall to zero.

8 Troubleshooting

This table lists the general failure phenomena, causes and troubleshooting methods that may occur in the instrument.

Control Station	Dain Canaar Failura	Colution
Central Station	Rain Sensor Failure	Solution
Performance		
	Indicates that the rain sensor has	Inspection
	no signal output or the	
	transmission line is faulty	
	① Reed switch failure	①Replace the reed switch
Can't receive	② The distance between the	② Adjust the reed switch
data when it	magnet and the reed switch is too	distance
rains	far	
	③ The welding wire falls off or the	③Repair
	signal wire is broken	
	④ The tipping bucket is stuck	4Exclude
	⑤ The instrument is blocked	⑤Clear the blockage
	① The tilt angle of the tipping	① Re-titration to adjust
	bucket of the rain sensor is out of	the inclination
	balance, but this error generally	
	does not exceed $\pm 10\%$.	
When it rains,	② The position of the magnetic	② Adjust the distance
the rainfall data	steel and the reed switch is not	
received is quite	good, resulting in good times and	
different from	bad times, so that some signals	
that of the test	are missing.	
rainfall.	③The anti-jitter function of the data	③ Adjust the parameters
	collector is invalid.	of the anti-vibration circuit
	④ The distance between the test	4 Objective reasons, not
	rain gauge and the system rain	instrument failures

	sensor is farther or there is strong wind.	
The number of	Check whether the socket is	Dispose of incoming
rains keeps	flooded, this phenomenon often	water, reinstall
coming, but the	occurs after heavy rain	
actual situation is		
not raining		

Note: The faults listed in the table are not necessarily the faults of the rain gauge itself. After checking the faults of the instrument itself, you should also check whether there are faults in the transmission lines, data acquisition devices, telemetry terminals and other equipment of the instrument, and eliminate them one by one.

9 Warranty

The Standard warranty period for this product is one year. From the date of delivery, within 12 months, the company is responsible for free repair or replacement of the failure caused by the quality of the sensor (Human damage, Damages due to Surge, Animals, etc, are not covered).