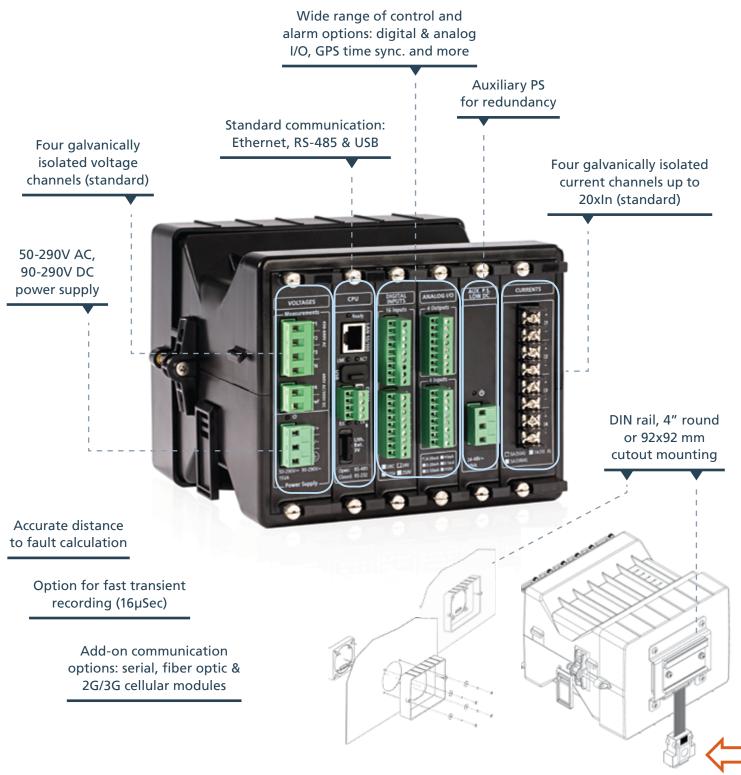
PM180 eXpertMeter™

12.25

(9)

MULTI-PURPOSE DEVICE FOR MANY APPLICATIONS, INCLUDING:


- ✓ INDUSTRIAL & SUBSTATION AUTOMATION CONTROLLER
- ✓ HIGH PERFORMANCE POWER QUALITY ANALYZER (PQA)
- ☑ REVENUE GRADE CHECK METER
- ☑ DIGITAL FAULT RECORDER (DFR)
- SEQUENCE OF EVENTS (SOE)
- ✓ POWER METER WITH IEC 61850 PROTOCOL
- MOTORS AND LARGE LOAD MONITORING

Powerful Solutions

PM180 eXpertMeter[™]

SATEC eXpertMeter[™] PM180 is a high performance analyzer that allows versatile uses. The high performance of the PM180, together with the unique flexible design of the expansion cards and the versatile installation on DIN rail, 4" round or 92x92mm cutout, enables its use in a large variety of applications, in which it can substitute several other devices—saving costs, space and complexity.

Local & Remote Displays

The PM180 can be connected to a local display, plus up to two remote displays (via RS-485), at the same time. The selection of displays includes LCD or LED display in various configurations.

Modular Field-Installable Design

The unique modular design of the PM180 ensures its adaptation to changing needs, through a selection of numerous plug-in options for multiple customer applications. The PM180 can have up to 3 expansions modules.

Automation & Control

DIGITAL INPUTS

16 inputs (total up to 48 DI) Optically isolated dry/wet contact Scan time: 1ms @ 60Hz, 1.25ms @ 50Hz 24/125/250V DC

RELAY OUTPUTS

8 relays (Total up to 24 RO) 8 relays rated at 8A/250V AC, 5A/24V DC, 0.25A/250V DC

ANALOG INPUTS / OUTPUTS

4AI and 4AO (Total up to 12AI / 12AO) Ranges:

- ±1mA (with 100% overload)
- 0-20mA
- 0-1mA (with 100% overload)
- □ 4-20mA

Accuracy Class 0.25 FS Scan/update time: 2 cycles

Communication

COMMUNICATION PORTS

IRIG-B module

- Optically isolated IRIG-B port
- Second RS-422/485 COM port

TXFX module

- Redundant Ethernet port
- 10/100 Mbit with RJ45 connector
- 100Base FX with SC connector

2G/3G cellular modem

- Antenna connection: SMA
- Supports UMTS/HSPA+ bands: 800/850/900/AWS/1900/2100

Measurement / Fault Channels

TRANSIENT RECORDER MODULE

Records voltage transients of up to 2kV (L-G) at 1024 samples/cycle per channel

FAULT RECORDER MODULE

Additional current input offers separated metering & protection CT connection, records current faults of up to 200A (40*In)

Redundant P.S.

AUXILIARY POWER SUPPLY

- 50-290V AC and 40-290V DC, 20W
- 9.6-35 V DC, 20W

(max. one aux. power supply per PM180)

Industrial & Substation Automation Controller

PM180 as a Bay Controller Unit (BCU)

SATEC's PM180 is a cost effective solution for electrical substation automation.

By adding a single PM180 device to each feeder, ALL the information required for substation automation is provided. The PM180 extends the life expectancy of electromechanical relays by providing information lacking in electromechanical devices without interfering in the protection scheme.

PM180 provides fully automated control of substation switching devices. After the switches are configured in the device, typically no additional logic is required for controller operation, except for interlocking logic. Bay control solutions are customized via control logic and a variety of digital I/O and analog measurements.

Features

- Monitoring and control capabilities for 2 circuit breakers and 14 circuit switches
- One-pole and three-pole switch position monitoring using two or six contacts
- One control output for switch closing
- Two synchronous control outputs for switch opening for devices with one and two opening coils
- Select-close control output for secure switch closing operations
- Two select-open control outputs for secure switch opening operations
- Configurable command pulse duration
- Option for adaptive pulses controlled via setpoint control logic
- Supervision of command execution & reporting on operation termination

- Interlocking logic
- Secure timed-out interlocking bypass logic
- Switch position substitution option
- Indication of non-controllable breaker trips
- Counting of breaker and switch operations
- Logging close/open operations and switch position changes
- Local switch control via setpoint control logic
- Remote switch control and monitoring via Modbus and IEC 61850 protocols
- Inter-device IEC 61850 GOOSE communications for remote interlocking

High Performance Power Quality Analyzer (PQA)

Cutting Edge Power Quality Analyzer & Recorder

The PM180 is the most advanced power quality analyzer and recorder on the market. The instrument is a product of SATEC's 25 years of experience in the creation of power quality instruments. The PM180 is designed to fully comply with the most demanding industry standard, IEC 61000-4-30 Class A. It provides power quality reports and statistics according to IEEE 1159, EN50160, GOST 13109 or GOST 54149, complimented by comprehensive power quality event/data log with waveforms available for detailed Power Quality event analysis. Redundant power supply allows full readiness for any power quality event, including major dips and interruptions. The individual harmonics and inter-harmonics are analyzed according to IEC 61000-4-7. The instrument also supports directional power harmonics analysis. Flicker is measured and analyzed according to IEC 61000-4-15.

- Power quality analysis and reading according to IEC 61000-4-30 Class A
 - Sags/swells (dips/overvoltages), interruptions, frequency variations, voltage variations
 - Flicker, voltage unbalance, harmonic and interharmonic voltages and currents
 - Programmable thresholds and hysteresis
- Built-in IEEE 1159, EN50160, GOST 13109 or GOST 54149 statistics and reports (market dependant)
- Redundant auxiliary power supply for recording major dips and interruptions
- Harmonics and interharmonics according to IEC 61000-4-7

- Directional power harmonics
- Voltage and current THD coefficients
- Currents TDD coefficients and K-Factors
- Waveform, power factor and phasor data recorder
- Symmetrical components
- Flicker measurement according to IEC 61000-4-15
- Waveform recording
 - Selectable sampling rate up to 256/1024 samples/cycle
- Power quality event recorder
- Event recorder for logging internal diagnostic events, control events and I/O operations

Revenue Grade Check Meter

Designed for Revenue Grade metering, the PM180 provides a high accuracy energy measurement that can be used to check the utility meter, as well as adding power quality and control functions.

For high performance revenue metering, the PM180 includes:

- Exceeding Revenue 0.25 Class Accuracy (IEC 62053-22)
- Built-in Time Of Use (TOU) with a 10 year calendar, 16 types of days and up to 8 tariff changes per day for each daily profile

The precise measurement class of accuracy ensures that the energy readings are better than the utility meter's readings, which makes it trusty when there is a discrepancy between the utility and the PM180 reading.

The TOU allows for configuring practically any utility tariff scheme, while the onboard storage makes it independent of any communication failures.

The SATEC ExpertPower™ billing module is designed to produce a utility-like bill, based on the PM180 stored information. It has a dynamic tariff definition, including prices, usage, seasons, peak demand and any various charges that a utility bill may contain. This allows for accurate cost calculation and reliable comparison with the utility bill, which is a key factor in any billing dispute.

These applications encourage efficient energy consumption, by creating energy saving plans, providing indication of excess or unnecessary energy usage and validating the correctness of future electric bills, thus enabling an all around supervision and control of electric expenses and leading to considerable reduction in electric costs.

expertpower*

Exercisely Computation No.: 388 Noter No.: 310813-1	84.4	i of Charge No. particit of mater readings	Arty 201				
1.		e af baga in parte					
Over substance, we are pleased to pr	conti the calculate	n for the power o	or surreption (ockdag/087)			
Can Alfano Bergy Charges							
Notice Advances	Number of Contract	796,001	1000	104,000	4,005.00	1.74 sats	-
ininkulan	NUMB	76,000	ALC: NO	10,00	19,000.00	5.62 units	-
ljuten brefti Darp	10.90	78,00	\$109.0	10,00	49,000,00	6.04 (1993)	-
keena besuing Network Idament	11080	796,001	4103910	104,070	4,05.0	436 am	
Sectory to Galactific	11,080	76,00	\$1,2810	101.09	1,05.0	1004 mm	60.
Intal Los Misos Brange Dargen							1,000
tes Dang Series Dangs							
Interfer Deg	316,060	78,09	\$1080	101,100	4,00,0	18 (19)	1/405
	-						1,385
	10080		41090		2.4		
	11,000		10,000		76.37	8.00 5	100.
							4,007.0
	muster 1108					1	

Digital Fault Recording (DFR)

SATEC PM180 includes true Digital Fault Recording and Disturbance Recording. The standard device includes four current channels for up to 20xln (100A @ In=5A) of fault currents. Adding the DFR module (page 4) allows for separated connection of measurement CTs and protection CTs of up to 40xln (200A). Three AC voltage channels and one AC/DC measurement input channels are also included. Multiple PM180 devices can cross trigger for up to 20 cycles of pre-fault information for distributed recording. Fault information can be exported to PQDIF/COMTRADE format via PAS software.

The fault recorder provides 4 measured and recorded currents (including measured neutral current). The event log is complemented by waveform recording.

PAS POWER QUALITY SETUP

					-	121		-			_			
	_	191.00	_			1.40			and - Taxa	10.000			land.	
Reart Cathgarty	Seattle 1817	-	-	-	1.64	14		12-141 14-181	424.		time.	darlard.	- Alar	12
New Pagancy diffs	- 11	5.0	12	0	0	P (6)	0	-	-	1	-	-	-	- 94
Volge Veraliana, BVTUP	- 14		14	0		1.8		-	-	-	- 2	-	-	1.00
Real rollings Discours, dollar	- 6.8	24	1.0	10	10	7.8	111	-	-	-	-	-	-	-
Picker Security, Pit	1.8			101		1.8		-	-	-		-	-	-
other live hits	- 111	24	100	14		7.8					- 4	1.8	1.1	1.94
integriteruptore, Sale	- 10	0.0	10	14	0	7.5		31	1	-	- 4	1.2	1 2	1.44
Report Develope, Mr.	10.0	210	14	14	0	1 1	0	10		18		1 3	2 1	- 14
Taxani Travolaga, Mix	1011		14	14		1.8	CHC.				-			
integration in	10	1.0	14	0		1.8		-	-	-	1	-	-	
Aurone Trib. N				C.	0.	1 8	0.	-	-	-		-	-	- 94
Research college Sold	-		10	C	100	1.8	10	-		-				
metanana 142, k	2.0	6.0	0	C		1 2		-	-	-		-	-	-
Heterone Wege Kin	-			C.		+ <u>+</u>		-	-			-	-	- 14
Hans Spraing schape, Non	-	2.0		C.		1.5				3				- 94
P. Roude Craftel		. 1			1		-1	- Per	- 1-		1		1	

The Fault Recorder can be triggered by the embedded fault detector or externally through any digital input. External triggers are automatically enabled for the Fault Recorder.

When the Fault Recorder is enabled, it automatically records all internally detected and externally triggered fault

PAS FAULT RECORDER SETUP

		_								
Ϊŝ	palle at	and the second	Thread with the second and the secon	diameter.	1.000	(allowed)	Sussien.	threadward, and and a second and a	Aqual of a	ž
	External Trapper	-	-		10	-	-			
10	Develop Turnet	16.0	8554	54	14					10
40	Detailes unege	110	2111	14	14	-	-	-	-	- 10
-	Garant Unitational	4.0	-	54	9	-	-	_	_	- 10
10	states interest	1.1	_	14	10		-	-	-	10
-	(hansymething	100.0	FREE		12	Notice of Apple	-	201211	8.0	12
-	undersaflage	94.0	UST BY	54	- 54	-	-	_	_	
10	in president damage.	14.0	0.004	64	100		-			10
_					-	-				_
_	include:	-	_	_	_	10 contra	state in such	_	_	_
	aft #10	Lapla		-	No. Or		Autoria Autoria	100		-
	2 D			2		100	* *			40

events to the Fault Log file and to the Sequence Of Events Log (see pg. 8).

The Fault Recorder setup allows you to adjust thresholds and hysteresis for different fault triggers, and to define the waveform and data log options for recording fault events.

PAS FAULT LOG REPORT

	10 df 8 - 0	7						
-			Sub-12 Paulting El	0415 10:08				-
	Balo/Time	Front	Rault Category	Plane	Ange	P1	tials Hapitale	Г
1	00,00,04 35.54.01.478	1121020	Zero sea, listinge	1.8	1005.34	5.80	29905	
4	06/05/04 382432-475	FE2.1848	Excusion Voltage			9.00	44900	
۶.	04,05,04 15,14,15,471	***	Erro una biolimpe	4.9		6.80	250510	
٠.	04,08,06 181417.475	00.0024	Referred Tragger	6.8	\$1995.34	5.61	2000	
Σ	06,05,064 355437423	803.8425	Extended Trapped	0		6.00	23005	
8	06/05/06 35:54:57.472	PG-0444	Extend frigger	1.3		6.00	44994	
7	04/05/04 18:14:17715	FE5.1403	Carrod Bolaiser	1.0	75.05	0.40	31604	
۰.	06/05/04 18:04:07/715	101103	Carried Initiations	12		6.00	23053	
۰.	06,05,064 35.5457795	1011032	Carried Bolialance	0		6.00	33062	
18-	06/05/04 181417768	FID-LINE?	Overland		24,75	9.17	431.84	
н.	04,05,04 1514.07745	FT5.1823	(horizont)	13		6.85	25675	
٩£	06,05,04 35,54,57,746	105-14623	Overcament	63		6.00	33672	
٥Ŀ.	04,05,064 35.3438.084	413.1884	Exercising tellings	4.8	81985-62	1.43	205/10	-
14	06,05,06 15:54:35.084	1121834	Zenn song Golfman	1.2		6.00	21200	
а.	04,08,04 181418.084	FT2-1804	Tare say, William	1.3		0.00	33004	
÷.	06/05/04 35:54:38.404	FE3.1825	Carried Belieferen	1.5	96-46	8.45	129905	-
<u>ي</u> ر	05/05/04 38:24:38.404	112-14-23	Carried Britelance	1.2		6.00	44910	
18	04/05/06 15:14:18:404	FC318/5	Correct Belieberge	13		0.00	31040	
н.	04,05,06 151418.470	FE5.1826	(how when the	4.6	45.45	8.25	20065	
88.	06,05,06 35.54 38.470	FE5-3424	Overcament	12		6.00	329075	
н.	06/05/04 38:04:08:400	FE3-28-29	Overland	13		0.00	11140	
44	04,05,04 1518.04.118	FT2-1807	Prev seq Voltage	1.0	134.30	8.62	22975	
22	06/05/06 15:18:04.318	#121827	Zoro see, tellinge	12		6.00	31298	
н.	06,05,06 161884.315	11210037	Entry samp bidlinger	1.3		0.00	88040	-
8	06/05/06 28:58:91.815	111100	Volkage Unit-alarter	1.0	25.99	9.13	22004	
н	00,00,04 1010.04.044	FTH.1828	Village Britalesce	1.2		0.00	33400	
u.	06/05/04 35/28/04/844	\$14,2828	Voltage Britelance	13		6.85	23005	-
а.	00,00,000 10.08/04.004	1021955	(heranet)	1.9		0.00	23007	
PF.	04,03,06 111804.864	The second	form Log 7 46/15/14 8	ALC: NO	25.11	0.13	13004	
н.	04,05,04 1818.04.864		-			6.85	33963	
н.	06,03,04 10.45.85.728	112.18(36	Jaro sea, Vallage	1.0	863.42	6.82	25807	
ы.	06/05/04 1848/81/12	FE2.1839	Dero-see, Voltage	-	0	0.00	10000	
88	06,05,06 1040.05.755	1121838	Anno ang liakage	6.0		6.00	22901	
H.	04,08,04 10-1042310	********	Volkage Britalance	6.8	20.26	9.88	310%	
XE.	06,05,04 15,45,82,250	1143831	Volkage Britalance	0		6.00	25267	-
н.	D6/05/04 10:00:82.210	114,14011	Volkage Initialized	6.0		6.00	41475	
я.	06,06,06 1217,08,416	FTH.18732	Volkage Britalance	6.0	825.94	0.58	33907	
н.	06/06/04 1213/08/616	#14,1852	Volkage Bribalance	12		6.00	19654	- 1
	ALINO, MALENSARDARY.	3127944	THE R. LOW.	-14		1.65	19071	- 1

Viewing the Fault Log

Fault log files are displayed in a tabular view, one evernt per row. PAS loads the entire database table to a window so that you can scroll through the entire log to view its contents or a particular event loaded from the PM180 separately (for fast loading fault).

Features

- IRIG-B/SNTP/DI time synchronization
- 256 MB memory
- Programmable fault thresholds and hysteresis
- Up to 200 Amps fault currents (40xln)
- Separate measurement and protection CT connection (option)
- Zero-sequence currents and voltages
- Current and voltage unbalance
- Under-voltage, neutral current
- Ready-for-use fault reports—fault currents magnitude and duration, coincident volts magnitude, fault waveforms and RMS trace
- Distance to fault calculation
- Waveforms from multiple separate locations (via PAS)

Distance to Fault

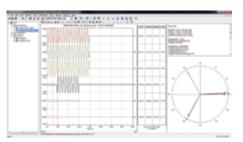
Accurate fault location reduces repair costs by avoiding lengthy and expensive patrol using car or helicopter, and expedites repairs and restoration of the power; thus increasing availability time and customer satisfaction.

The PM180 includes a high accuracy distance to fault calculation algorithm, based on the measuring of 3 or 4 voltages, 3 or 4 currents and the currents of parallel line when present, at the upstream side of the fault. The algorithm includes compensation for CT and PT errors and results with average accuracy of 0.5% (depending on PT, CT and time synchronization accuracy).

Supported line configurations:

- Single line
- Parallel lines
- Partially parallel lines
- A line with a branch

Required parameters:


- Configuration of the line/s
- Parameters of the line/s (impedance, length, etc.)
- Compensation parameters for CT & PT

Detected faults:

- Three-phase short circuit
- Two-phase short circuit
- Two-phase short circuit to ground
- Single-phase short circuit to ground
- Single-phase open wire

Fault detection information:

- Fault classification (type and phase/s)
- Distance to fault (km or miles)
- Duration of fault

SINGLE PHASE SHORT CIRCUIT FAULT INFORMATION (PAS)

Fault Locator - SUBSILLT	ION 2600Curb		
Pault Location			
RV RD FV RD	Advance Feat Locator Sation rans Dramate	Sume #33 Une #11	
厚心 厚山 厚山	Live type Minusers eput Live length Recarded	Single Tair und 51 00 km 1940-14 15 29:17 188	
Processon roley:	Taxini Recording time Sampling ratio Proceedings	11-09-14 15-29-15-887 1278 a 64 exercise type 50 05-46	
Bealter contacts:	Tagger Calculation mervel	Automatic Incedien 03.00-160.70 mm. 4 cycle(x)	
	Single chase A short-ch Deterce + 70.700 km (tel la ground. Annalism «1-8.6221xv).	
	1		
		OK Cavesi	Hep

DISTANCE TO FAULT CALCULATION (PAS)

Sequence of Events (SoE)

Designed for an electrical utility substation or industrial environment to record contact openings and closings of field devices, such as electromechanical and microprocessor controlled relays. It includes up to three 16 digital input modules, with up to a total of 48 digital inputs (wet or dry type) with a 1 mSec time resolution between events.

The Sequence of Events (SoE) recorder can log four types of events: digital input events, relay output events, fault events and setpoint events.

When displaying the SoE Log reports, PAS establishes links between the event and

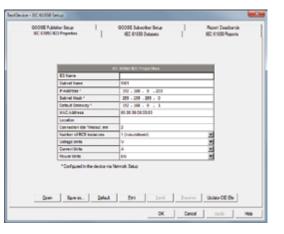
SOE / WAVEFORM COMBINATION

other database records where it finds a relationship between the recorded data and the event.

SEQUENCE OF EVENTS LOG

Power Meter with IEC 61850 Protocol

The possibility to build SAS (Substation Automation System) rests on the strong technological development of largescale integrated circuits, leading to the present availability of advanced, fast, and powerful microprocessors. The result was an evolution of substation secondary equipment, from electro-mechanical devices to digital devices. This in turn provided the possibility of implementing SAS using several intelligent electronic devices (IEDs) to perform the required functions (protection, local and remote monitoring and control, etc.).


As a consequence, the need arose for efficient communication among the RTUs, especially for a standard protocol. Until the introduction of IEC 61850, specific proprietary communication protocols developed by each manufacturer have been employed, requiring complicated and costly protocol converters when using RTUs from different vendors.

IEC 61850 is an international standard of communications for substations, which enables integration of all protection, control, measurement and monitoring functions within a substation and provides the means for high-speed substation protection applications, interlocking and intertripping. It combines the convenience of Ethernet with the performance and security which is essential in substations today.

The use of IEC 61850 in digital substations provides various benefits:

 A single protocol for complete substation considering modelling of different data required for the substation

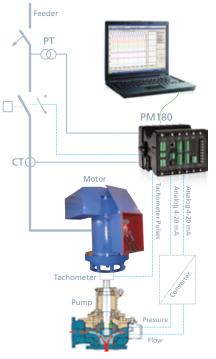
PAS IEC 61850 Setup

- Definition of basic services required to transfer data so that the entire mapping to communication protocol can be made future proof
- Promotion of high interoperability between devices from different vendors
- 4. A common method and format for storing complete data
- Definse complete testing required for the equipment, conforming to the standard

The PM180 can be used either as a bay controller (see. pg. 5) or as a Power Meter. The PM180 supports the following sections of IEC 61850 (completely or partially): -1, -2, -3, -4, -5, -6, -7-2, -7-3, -7-4, -8, -10

Configuration of IEC 61850 includes IEC 61850 IED Properties, IEC 61850 Datasets, IEC 61850 Reports, GOOSE Publisher Setup, GOOSE Subscriber Setup and Report Deadbands.

Motors & Large Load Monitoring


Monitoring Large motors

Electrical motors and other large loads are an important part of the electrical equipment and are dominant in the overall consumption. As a result, they significantly affect the energy efficiency and site reliability. Monitoring main motors includes observing their energy consumption, tracking their health and examining their efficiency.

Energy Consumption

Electric motors consume about 50% of the world's energy. It is therefore very important to track their energy consumption. While a basic power meter can do this job, for large motors it is recommended to use a higher accuracy device, with power quality and control functions.

Real-Time Pumps Efficiency Monitoring Application

Using the PM180 to measure the electricity consumption, the digital pulse input to read the speed of the motor and the analog inputs to read the flow and pressure allows creating an advanced real-time pump efficiency monitoring.

The pump's efficiency can be calculated (Efficiency%=Ppump/PE*100%) and the system notifies when the efficiency is too low, which helps in increasing energy efficiency, as well as alerting on potential failures.

Features

- Accurate efficiency monitoring
- A single PM180 device performs all data logging, time synchronized
- Improved reliability
- Allows additional control functions using relay outputs, digital inputs and analog I/O

Motor Reliability & Troubleshooting

Monitoring the power quality of the motor, particularly the harmonics, inter- and sub-harmonics, is a good practice for proactive maintenance. Typically, internal motor damages cause a high level of harmonics, inter- and/or sub-harmonics. Monitoring power quality allows for maintaining motors during a planned shutdown, rather than very expensive unscheduled shutdowns.

Large motor startup may take minutes, while most digital motor protection devices can record for a few seconds only. SATEC PM180 provides continuous logging of up to 3.5 minute waveforms (including up to 20xIn high current), which allows for analyzing failures and for monitoring the motor health, thus improving the facility's reliability.

Features

Fast Data Logging Recorder

- From ½ cycle RMS to 2-hour envelopes
- Programmable post fault on any internal and/or external trigger condition

Waveform Capture

- Provides simultaneous capture for all voltage and current channels with choice of sample rate, up to 256 (1024 with Transient Module). Selectable pre-fault / post-fault recording length. Disturbance capture recording up to several minutes
- Transient capture (>78/65µs—50/60Hz)

Harmonic Analyzer

- Total Harmonic Distortion for Voltage and Current and up to the 63rd individual harmonic for V, I, P, Q
- Including directional power harmonics (Load or Source)
- V-I angle, TDD and K factors

Multi-Function Power & Energy Meter

- Real time cycle-by-cycle measurement of high accuracy, true RMS voltage, current, power, demand and energy
- Revenue accurate meter
- Exceeding Class 0.25 (IEC 62053-22 / ANSII C12.20)
- Advanced Time Of Use (TOU) feature (16 Energy sources include external digital pulses, up to 4 seasons, 4 daily profiles, 8 Tariffs, flexible automatic calendar) for any complex billing scheme
- KYZ or KY output and LED indication for calibration and test (via optional display)
- Vector diagram and symmetrical components

Real-Time Clock & Synchronization

- Real-Time Clock with maximum 5 seconds drift per month @ 25°C
- Provides 1 msec time resolution via IRIG-B time code input or satellite clock for common time base (requires IRIG-B module)
- As an SNTP client, it can accept periodic synchronization of the meter clock from an SNTP server
- Time sync from digital input with 1ms accuracy

Wide Range Voltage Inputs

- Three impulse galvanic isolated AC voltage inputs
- Impulse dielectric withstand 6kV
- Wide range application up to 828V
- AC/DC voltage input: station battery monitoring (up to 300V DC)

Wide Range Current Inputs

 4 dual purpose current inputs (3-phase + Neutral)—1A/5A for measurement CTs with Class 0.2S revenue grade accuracy to 10A/20A and 50A/100A (5A/HACS) for protection CTs (10/20x)

Communication Platforms

- 3 independent built-in Ports plus 3 optional:
 - IRIG-B and RS-422/485 port
 - TXFX (fiber optic)
 - 2G/3G cellular modem
- Communication Protocols: Modbus RTU, ASCII, DNP 3.0, Modbus/TCP, DNP3/TCP, IEC 61850 (option), IEC 60870-5-101/104

Digital & Analog I/O Options

3 expansion slots for a wide range of plug-in modules:

- 16 high speed digital inputs, total up to 48 DIs
- 8 dry contact relay outputs, total up to 24 ROs
- Mixed 4 analog inputs and 4 outputs, total up to 12 AI/12AO

Logging, Recording & Programming

- Standard onboard memory: 256 MB
- Programmable controller: up to 64 control setpoints, up to 8 conditions OR, AND, arithmetical functions logic, extensive triggers, programmable thresholds and delays, relay control, event-driven data recording
- 8 fast waveform recorders: simultaneous 8-channel AC, one DC: up to 48 digital inputs in a single plot
- Waveform sampling rate 32, 64, 128 or 256 samples per cycle; up to 20 prefault cycles (2 cycles of 1024 samples per cycle or 4 cycles with 512 samples per cycle with Transient Module)
- Up to 3.5 min. of continuous waveform recording
- 1-ms resolution for digital inputs
- 16 fast Data Recorders

 (16 parameters on each data log):
 From ½ cycle RMS to 2 hour RMS envelopes; up to 20 pre/post-fault cycles; programmable data logs on a periodic basis and on internal or external trigger
- 32 digital internal counters
- 16 internal programmable timers (½ cycle to 24 hours)

Technical Specifications

INPUT RATINGS

3 Voltage Inputs: V1, V2, V3

- Direct input and input via PT up to 828V AC line-to-line, up to 480V AC line-to-neutral
- Burden for 480V: <0.35 VA</p>
- Burden for 120V: <0.03 VA</p>
- Overvoltage withstand: 1000V AC continuous, 2500V AC for 1 sec.
- Galvanic isolation: 4kV AC / 1 min.
- Impulse dielectic withstand 6kV

Current Inputs: I1, I2, I3, I4

- Selectable 5A or 1A (upon order)
- Operating range: continuous 4xln ANSI (20A/4A) or 2xln IEC (10A/2A)
- Fault currents: up to 20xln (100A @ HACS , 50A @ 5A, 10A @ 1A), max 1 sec.
- Burden for 5A: <0.15 VA;
 Burden for 1A: <0.02 VA
- Overload withstand: 4xIn RMS continuous (20A/4A)
- Max. wire size: 10 AWG/6mm²
- Terminals pitch: 13mm
- Galvanic isolation: 4kV AC / 1 min.
- Impulse dielectic withstand 6kV

AC/DC Voltage Input: V4, Vref

- Operating Range: 400V AC
- Direct input and input via PT (up to 480V AC) or Battery input
- Input Impedance: > 10MOhm
- Burden for 400V: << 0.01 VA</p>
- Burden for 120V: << 0.01 VA</p>
- Overvoltage Withstand: 1000V AC continuous, 2500V AC for 1 second
- Resistive Isolation, Insulation withstand: 4kV AC @ 1mn
- Wire Size: 10 AWG (up to 6 mm²)
- Terminals Pitch: 7.5 mm

Power Supplies

- Two redundant galvanically isolated power supplies
- Selection of power supplies:
- 50-290V AC and 40-290V DC
- 9.6-35V DC

COMMUNICATION

COM1

- Optically isolated RS-232/485
- Insulation withstand: 4kV AC @ 1 min.
- Connector: removable, captured-wire, 4 terminals
- Max. wire size: 12 AWG / 2.5 mm²
- Max. baud rate: 115,200 bps
- Protocols: MODBUS RTU, MODBUS ASCII, DNP 3.0, IEC 61850 (option), IEC 60870-5-101/104 (option)

COM2

- Optically isolated RS-422/485
- Insulation withstand: 4kV AC @ 1 min.
- Connector: removable, captured-wire, 5 terminals
- Max. wire size: 12 AWG / 2.5 mm²
- Max. baud rate: 115,200 bps
- Protocols: MODBUS RTU, MODBUS ASCII, DNP 3.0

COM3 (Display)

- Optically isolated RS-485 port for the remote display
- Insulation withstand: 2.5kV AC @ 1 min
- Connector: DB15
- Max. baud rate: 115,200 bps.
- Protocols: MODBUS RTU, MODBUS ASCII, DNP 3.0

USB Port

- Isolated USB port
- Insulation withstand: 4kV AC @ 1 min.
- Connector: Type A male
- Supported protocols: MODBUS RTU

Ethernet Port

- Transformer-isolated 10/100 Base-T port
- Insulation withstand: 4kV AC @ 1 min
- Connector: Modular RJ45
- Protocols: MODBUS TCP (Port 502), DNP 3.0/TCP (Port 20000), IEC 61850 (option)
- Number of simultaneous connections (sockets): 5

IRIG-B Port (Option)

- Optically isolated IRIG-B Port
- Time code signal: unmodulated (pulse-width coded)
- Level: unbalanced 5V
- Connector type: BNC
- Recommended cable: 510hm low loss: RG58A/U (Belden 8219 or equivalent), TNC connector

TX/FX Port (Option)

- Transformer-isolated 10/100Base-T port
- TX Connector: Modular RJ45
- Optical-isolated 100Base FX
- FX Connector: SC
- Supported protocols: MODBUS TCP (Port 502), DNP 3.0/TCP (Port 20000), IEC 61850 (option)
- Number of simultaneous connections (sockets): 5

ENVIRONMENTAL CONDITIONS

- Operating temperature: -22°F to 158°F / -30°C to 70°C
- Storage temperature: -40°F to 185°F / -40°C to 85°C
- Relative humidity:
 0-95% non-condensing

DIMENSIONS

HxWxD

 PM180
 6x8.6x8.3" / 152x220x210 mm

 RGM180
 7.1×8.7x1.9" / 181×221×48 mm

 RDM180
 4.5x4.5x0.8" / 114×114×20 mm

 RDM312
 6.1x12.3x1" / 155x313x26 mm

Weight
 PM180 2.5 kg / 5.5 lb
 RGM180 0.7 kg / 1.54 lbs

+91 98313 30173, +91 98312 06454

Standards Compliance

- Directive complied with EMC: 89/336/EEC as amended by 92/31/EEC and 93/68/EEC
- LVD: 72/23/EEC as amended by 93/68/EEC and 93/465/EEC
- Harmonized standards to which conformity is declared: EN55011:1991; EN50082 1:1992; EN61010-1:1993; A2/1995
- ANSI C37.90.1 Surge Withstand Capability (SWC)
- EN50081-2 Generic Emission Standard: Industrial Environment
- EN50082-2 Generic Immunity Standard: Industrial Environment
- EN55022: Class A
- IEC 61000-6-2
- IEC 61000-6-4
- IEC 60255-5
- IEC 60255-22

Accuracy

- Active Energy, IEC/AS 62053-22, class 0.2S¹
- Reactive Energy, class 0.5S (under conditions as per IEC 62053-22:2003 @ 0 ≤ |PF| ≤ 0.9)

Power Quality

- EN50160: Power Quality in European
 Electricity Supply Networks
- IEEE 1159: Power Quality Recorder in US
- GOST 13109: Electric energy, Electromagnetic compatibility of technical equipment, Power quality limits in public electrical systems

- GOST 54149: 2010: Electric energy, Electromagnetic compatibility of technical equipment, Power quality limits in public electrical systems
- IEC 61000-4-7, Harmonics and interharmonics measurement
- IEC 61000-4-15, Flicker measurement
- IEC 61000-4-30 class A, Power quality measurement methods
- IEC 62054-21: Real time clock backup, RTC accuracy ± 2ppm @ 23°C

EMC Immunity

- IEC 61000-4-2, IEC 60255-22-2:
 Electrostatic discharge, 15kV/8kV air/ contact
- IEC 61000-4-3, IEC 60255-22-3: Radiated Immunity, 10V/m and 30V/m
 @ 80 MHz – 1000 MHz
- IEC 61000-4-4, IEC 60255-22-4:
 Fast Transients burst, 4KV on current and voltage circuits and 2 KV for auxiliary circuits
- IEC 61000-4-5, IEC 60255-22-5: Surge 6KV on current, voltage circuits and power supply
- IEEE C62.41.2-2002: high voltage line surges
 - 100 kHz ring wave 6kV @ 0.5kA
 - 1.2/50 microsecond 8/20 microsecond Combination Wave – 6kV @ 3kA
- IEC 61000-4-6, IEC 62052-11:
 Conducted Radio-frequency, 10V @ 0.15 MHz – 80MHz
- IEC 61000-4-8: Magnetic Field
- IEC 61000-4-12, IEC 62052-11, IEEE
 C37.90.1: 2002: Oscillatory waves, CMM
 2.5KV & DFM 1KV @ 100KHz and 1MHz

Emission (radiated/conducted)

EN55022, IEC 60255-22: Class A

Construction

Safety

IEC/UL 61010-1

Insulation

- IEC 62052-11: Insulation impulse 6KV/500Ω @ 1.2/50 μs
- IEC 62052-11, IEC 61010-1: AC voltage tests related to ground, 4 kV AC @ 1mn

Atmospheric Environment

- Operational ambient temperature range: -30°C to +70°C
- Long-term damp heat withstand according to IEC 68-2-3 <95%, +40°C
- Transport and storage temperature range: -40°C to +85°C

Vibration

- IEC 60255-21-1: Vibration Response, Table I, Class-2
- IEC 60255-21-1: Vibration Endurance, Table II, Class-1

Mechanical Shock

- IEC 60255-21-2: Shock, Table II, Class-1
- IEC 60255-21-2: Bump, Table III, Class-1

Seismic Vibration

IEC 60255-21-3: Bump, Table III, Class-1

Panel Display protection

IEC 60529: IP54 (NEMA type 13)

Instrument protection

IEC 60529: IP30 (NEMA type 13)

1. Only for PM180-5A and PM180-1A models (internal CT), PM180-DFR model accuracy meets class 1

Measurement Specifications

PARAMETER	FULL SCALE@	ACCURACY			RANGE
	INPUT RANGE	% READING	% FS	CONDITIONS	
Voltage V1-V3	120V x PT ratio @ 120V 400V x PT ratio @ 690V	0.05	0.01	10% to 120% FS	0 to 999,000 V
Line current I1-I4	СТ	0.05 0.05 0.05	0.01 0.01	ANSI C12.20: 1%-120% FS 120%-400% FS IEC 62053-22: 1%-200% FS	0 to 120,000 A
Fault current I1- I4	СТ	2.0		400%-2000% FS	0 to 120,000 A
AC/DC Voltage	125V / 220V		0.3	10%-120% FS	0 to 290V DC
Active power	0.36 x PT x CT @ 120V 1.2 x PT x CT @ 690V	0.2 0.2	0.002 0.002	$ PF \ge 0.5$ and \oplus	-10,000 to +10,000 MW
Reactive power	0.36 x PT x CT @ 120V 1.2 x PT x CT @ 690V	0.3 0.3	0.002 0.002	$ PF \leq 0.9 \text{ and } \oplus$	-10,000 to +10,000 Mva
Apparent power	0.36 x PT x CT @ 120V 1.2 x PT x CT @ 690V	0.2 0.2	0.002 0.002	$ PF \ge 0.5$ and \oplus	0 to 10,000 MVA
Power factor	1.000		0.35	PF ≥ 0.5, I ≥ 2% FSI	-0.999 to +1.000
Frequency	50 Hz 60 Hz	0.002 0.002			40.000 Hz to 64.999 Hz 45.100 Hz to 70.000 Hz
Total Harmonic Distortion, THD V(I), %V _f (%I _f)	100	1.5	0.2	THD ≥ 1% FS, V (I) ≥ 10% FSV (FSI)	0 to 999.99
Total Demand Distortion, TDD, %	100		1.5	TDD ≥1% FS, I ≥ 10% FSI	0 to 100
Active Energy Import & Export		Class 0.2 ANSI Class 0.2S (IEC		rrent class 20	0 to 999,999.999 MWh
Reactive Energy Import & Export			s as per ANSI C12.20 s as per IEC 62053-22	0 to 999,999.999 Mvarh	
Apparent Energy		Class 0.2 under Class 0.2 under	0 to 999,999.999 MVAh		
Volt-Hours		Class 0.2		20%-120% FS	0 to 999,999.999 kVh
Ampere-Hours		Class 0.2		10%-200% FS	0 to 999,999.999 kAh
Symmetrical Components	Voltage FS	1		10%-120% FS	
	Current FS	1		10%-200% FS	
	Current FS	3		200%-300% FS	
Phasor angles		1 degree			

Key:

- PT External potential transformer ratio
- CT Primary current rating of external current transformer
- FSV Voltage full scale
- FSI Current full scale
- V_f Fundamental voltage
- I_f Fundamental current
- ⊕ @ 80% to 120% of voltage FS and 1% to 200% of current FS

Notes:

- Accuracy is expressed as ± (percentage of reading + percentage of full scale) ± 1 digit. This does not
 include inaccuracies introduced by the user's potential and current transformers. Accuracy calculated
 at 1 second average.
- Specifications assume: voltage and current waveforms with THD ≤ 5% for kvar, kVA and PF; reference operating temperature: 20°C-26°C.
- 3. Measurement errror is typically less than the maximum error indicated here.

OPTIONS DISPLAY Transducer version—no display X Graphic color display—5.7" touchscreen G 3 line ultra bright LED display D Multi window ultra bright LED display with 12 values + 1 text window M VOLTAGE INPUTS - 690V AC Nominal Voltage Input - 120V AC Nominal Voltage Input - 120V AC Nominal Voltage Input U CURRENT INPUTS - 5 Ampere 5 1 Ampere 1 100A Split Core HACS (Calibrated to 5A) CS1S FREQUENCY - 50 HZ 50HZ 60 HZ 60Hz ACCURACY AND POWER QUALITY STANDARD ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN - 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD - Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	
DISPLAY X Transducer version—no display X Graphic color display—5.7" touchscreen G 3 line ultra bright LED display D Multi window ultra bright LED display with 12 values + 1 text window M VOLTAGE INPUTS 0 690V AC Nominal Voltage Input - 120V AC Nominal Voltage Input - 120V AC Nominal Voltage Input U CURRENT INPUTS 5 5 Ampere 5 1 Ampere 1 100A Split Core HACS (Calibrated to 5A) CS1S FREQUENCY 50Hz 50 HZ 50Hz 60 HZ 60Hz ACCURACY AND POWER QUALITY STANDARD ANSI C12.20—USA Standard IEEE1159 Full Power Quality ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD D Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	1180 ORDER STRING PM180
Transducer version—no display X Graphic color display—5.7" touchscreen G 3 line ultra bright LED display D Multi window ultra bright LED display with 12 values + 1 text window M VOLTAGE INPUTS 690V AC Nominal Voltage Input - 120V AC Nominal Voltage Input U CURRENT INPUTS 5 Ampere 5 1 1 Ampere 1 100A Split Core HACS (Calibrated to 5A) CS1S FREQUENCY 50Hz 60Hz 60 HZ 60Hz 60Hz ACCURACY AND POWER QUALITY STANDARD ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	
Graphic color display—5.7" touchscreen G 3 line ultra bright LED display D Multi window ultra bright LED display with 12 values + 1 text window M VOLTAGE INPUTS 690V AC Nominal Voltage Input - 120V AC Nominal Voltage Input U - 120V AC Nominal Voltage Input U U CURRENT INPUTS 5 Ampere 5 1 Ampere 1 100A Split Core HACS (Calibrated to 5A) CS1S FREQUENCY 50 HZ 60Hz 60 HZ 60Hz ACCURACY AND POWER QUALITY STANDARD ANSI C12.20—USA Standard IEEE1159 Full Power Quality ANSI C12.20—USA Standard EN50160 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality A 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD D Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	LAY
3 line ultra bright LED display D Multi window ultra bright LED display with 12 values + 1 text window M VOLTAGE INPUTS - 690V AC Nominal Voltage Input - 120V AC Nominal Voltage Input U CURRENT INPUTS - 5 Ampere 5 1 Ampere 1 100A Split Core HACS (Calibrated to 5A) CS1S FREQUENCY 50 HZ 50 HZ 50Hz 60 HZ 60Hz ACCURACY AND POWER QUALITY STANDARD - ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN - 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD - Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	ransducer version—no display X
Multi window ultra bright LED display with 12 values + 1 text window M VOLTAGE INPUTS - 690V AC Nominal Voltage Input - 120V AC Nominal Voltage Input U CURRENT INPUTS - 5 Ampere 5 1 Ampere 1 100A Split Core HACS (Calibrated to 5A) CS1S FREQUENCY - 50 HZ 50Hz 60 HZ 60Hz ACCURACY AND POWER QUALITY STANDARD - ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN - 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD - Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	raphic color display—5.7" touchscreen G
VOLTAGE INPUTS - 690V AC Nominal Voltage Input - 120V AC Nominal Voltage Input U CURRENT INPUTS - 5 Ampere 5 1 Ampere 1 100A Split Core HACS (Calibrated to 5A) CS1S FREQUENCY - 50 HZ 50Hz 60 HZ 60Hz ACCURACY AND POWER QUALITY STANDARD - ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard ENSO160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN - 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD - Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	line ultra bright LED display D
690V AC Nominal Voltage Input - 120V AC Nominal Voltage Input U 120V AC Nominal Voltage Input U CURRENT INPUTS - 5 Ampere 5 1 Ampere 1 100A Split Core HACS (Calibrated to 5A) CS1S FREQUENCY - 50 HZ 50Hz 60 HZ 60Hz ACCURACY AND POWER QUALITY STANDARD - ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN - 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD - Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	ulti window ultra bright LED display with 12 values + 1 text window M
120V AC Nominal Voltage Input U CURRENT INPUTS 5 5 Ampere 5 1 Ampere 1 100A Split Core HACS (Calibrated to 5A) CS1S FREQUENCY 50HZ 60 HZ 60Hz ACCURACY AND POWER QUALITY STANDARD 60Hz ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN 85-265V AC and 88-290V DC (Default) 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD	AGE INPUTS
120V AC Nominal Voltage Input U CURRENT INPUTS 5 5 Ampere 5 1 Ampere 1 100A Split Core HACS (Calibrated to 5A) CS1S FREQUENCY 50HZ 60 HZ 60Hz ACCURACY AND POWER QUALITY STANDARD 60Hz ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN 85-265V AC and 88-290V DC (Default) 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD	90V AC Nominal Voltage Input -
5 Ampere 5 1 Ampere 1 100A Split Core HACS (Calibrated to 5A) CS1S FREQUENCY 50 HZ 50 HZ 50Hz 60 HZ 60Hz ACCURACY AND POWER QUALITY STANDARD 60Hz ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN 85-265V AC and 88-290V DC (Default) S5-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD	
1 Ampere 1 100A Split Core HACS (Calibrated to 5A) CS1S FREQUENCY 50 HZ 50 HZ 60 HZ 60 HZ 60Hz ACCURACY AND POWER QUALITY STANDARD 60Hz ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN 85-265V AC and 88-290V DC (Default) COMMUNICATION STANDARD COMMUNICATION STANDARD Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	RENT INPUTS
100A Split Core HACS (Calibrated to 5A) CS1S FREQUENCY 50 HZ 50 HZ 60 HZ 60 HZ 60Hz ACCURACY AND POWER QUALITY STANDARD 4 IEC 62053-22—European Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN 85-265V AC and 88-290V DC (Default) 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD - Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	Ampere 5
FREQUENCY 50 HZ 50 HZ 50 Hz 60 HZ 60 Hz ACCURACY AND POWER QUALITY STANDARD - ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN - 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD - Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	Ampere 1
50 HZ 50 Hz 60 HZ 60 Hz ACCURACY AND POWER QUALITY STANDARD ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN B 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD Default: Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104	00A Split Core HACS (Calibrated to 5A) CS1S
60 HZ 60Hz ACCURACY AND POWER QUALITY STANDARD A ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard ENS0160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN B 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104	
ACCURACY AND POWER QUALITY STANDARD ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	0 HZ 50Hz
ANSI C12.20—USA Standard IEEE1159 Full Power Quality A IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	0 HZ 60Hz
IEC 62053-22—European Standard EN50160 Full Power Quality E GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN 85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD	JRACY AND POWER QUALITY STANDARD
GOST 13109 / GOST 54149—Russian Standard G POWER SUPPLY—MAIN	NSI C12.20—USA Standard IEEE1159 Full Power Quality A
POWER SUPPLY—MAIN	C 62053-22—European Standard EN50160 Full Power Quality E
85-265V AC and 88-290V DC (Default) ACDC COMMUNICATION STANDARD Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104	OST 13109 / GOST 54149—Russian Standard G
COMMUNICATION STANDARD Default: Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	ER SUPPLY—MAIN
Default: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -	5-265V AC and 88-290V DC (Default) ACDC
	MUNICATION STANDARD
IEC 61850 850	efault: Modbus RTU, Modbus TCP, DNP 3.0, DNP/TCP, IEC 60870-5-101/-104 -
	C 61850 850
OPTIONAL PLUG-IN MODULES	mum 3 modules per instrument

OPTIONS				STATUS
MEASUREMENT / FAULT CHANNELS (MAX 1 OF EACH)				IONet
Transient Recorder Module (4 voltage channels, up to 2kV and 1024 samples per cycle per channel)	TRM-180			Contraction of the second
Fault Recorder Module (4 current channels, up to 200A)	DFR-180			
DIGITAL INPUTS (MAX. 48 DIGITAL INPUTS)		_		
DI 16 Dry Contacts	DI16-DRC-180	7		((-
DI 16 24V DC	DI16-24V-180		x 🗌	
DI 16 125V DC	DI16-125V-180		x	
DI 16 250V DC	DI16-250V-180			
RELAY OUTPUTS (MAX. 24 RELAY OUTPUTS)				
8 Relays	RLY8-180]→	x	
COMMUNICATION		_		
IRIG-B and RS-422/485 port	IRIG-180			
Fiber Optic Ethernet (TXFX), reduntant Ethernet and 2nd RS-422/485 port	TXFX-180		x	
2G/3G GSM Modem (Doesn't support 850/870 protocol) & 2nd RS-422/485 port	T3G-180		^	
2G/3G CDMA Modem (Doesn't support 850/870 protocol) & 2nd RS-422/485	5 T3C-180			
4 ANALOG INPUT / 4 ANALOG OUTPUT MODULE (MAX. 12AI/12A0)				5 COMPA
± 1mA (0±1)	4AIO1-180			
0-20 mA (0-10-20)	4AIO2-180		х	
0-1 mA (0-0.5-1)	4AIO3-180		^	
4-20 mA (4-12-20)	4AIO4-180			
AUXILIARY POWER SUPPLY (MAX. 1 MODULES PER INSTRUMENT)				
AUX. P.S. 50-290V AC and 40-300V DC	BACDC-180			
AUX. P.S. 9.6-35V DC	B21DC-180			

HEADQUARTERS

SATEC INC. North & South America 10 Milltown Court Union, NJ 07083, USA SATEC LTD. Europe & Africa P.O. Box 45022 Jerusalem 9145001, Israel
 Tel.
 1-888-OK-SATEC

 Local
 908-686-9510

 Fax.
 908-686-9520

 sales@satec-global.com

Tel. 972-2-541-1000 Fax. 972-2-581-2371

satec@satec-global.com

www.satec-global.com

M. B. Control & Systems Pvt. Ltd.

Corporate Office

31/1, Ahiripukur Road, Kolkata 700019, West Bengal, India Call : +91 98313 30473, 98312 06454 | Fax : +91 033 2287 0445 Email : enquiry@mbcontrol.com, service@mbcontrol.com (for service related queries only) Website : www.mbcontrol.com

Specifications are subject to change without notice. Copyright © 2014-2016 SATEC LTD.

+91 98313 30473, +91 98312 06454